

Methodology for Aggregation of Land Cover Data

LI, Zhilin (PhD, DSc) The Hong Kong Polytechnic University

TAN Shiteng and XU Zhu Southest Jiaotong University, China

Contents

- Why upscaling (aggregation) of land cover data: An introduction
- Upscaling of land cover data indirectly via upscaling of remote sensing image data
- Upscaling of land cover data directly via aggregation
- · Conclusions and outlooks

2018/11/21

UN World Geospatal information congress 19 - 21 November 2018 Deqing, China

resolutions/scales • To assist disaggregation of statistical data - "SDG indicators should be disaggregated, where relevant, by income, sex, age, race, ethnicity, migratory status, disability and geographical location (UN IAEG-SDGs) • National level→ sub-national→ ...→local→ ...→ pixel • Pixel size for a country/region Disaggregation by geographic location?

Need of land cover data at different \(\)

Contents

- Why upscaling (aggregation) of land cover data:
 An introduction
- Upscaling of land cover data indirectly via upscaling of remote sensing image data
- Upscaling of land cover data directly via aggregation
- · Conclusions and outlooks

2018/11/21

Images

Classification

UN World Geospatal information congress 19 - 21 November 2018 Deqing, China

Scaling of remote sensing images

- Upscaling: fine → coarse
 - e.g. 1m→2m→5m →10m→25m
 - A lot of work done
- When needed
 - no images with required resolution available
 - Available but we don't want to spend more money

- Downscaling: coarser to fine
 - e.g. 300m→200m→100m →50m→10m
 - Recent efforts
- Why needed?
 - because we have high resolution images (e.g. 0.5m) already?
 - Missing parts of higher images
 - · e.g. Cloud

(images downloaded from Google Map)

2018/11/21

UN World Geospatal information congress 19 - 21 November 2018 Deqing, China

7

Upscaling of remote sensing images

- Aggregation
 - Multiples of original resolution,
 e.g. 3x3 → 1x1
 - No interpolation required
 - By "mode", "median", "average" and Nth cell
- Resampling
 - Not multiples of original resolution, e.g. 3x3→2x2
 - Interpolation required
 - · Nearest Neighbour
 - · Bilinear interpolation
 - · Bicubic interpolation

"3x3 to 1x1" aggregation of image data

А	14	6	-	T 4	6	←→				
	₩	-	3	4	0	Pia	5	7	6	6
5		9	9	9	٥	H _p =(1x4+0.5x7+0.5x5	_	_	_	-
1	8	7	8	6	5		4	8	8	6
2	4	3	6	4	5		3	4	4	4
2	5	6	2	3	2		3	6	2	2
2	5	6	2	3	2	+0.25x7)/2.25≈5				
(a) ((a) Original data (6x6 grid)				d)	(b) Area-weighted interpolation (c) Result: 4			x4 gr	

"3x3 to 2x2" resampling of image data

2018/11/21

UN World Geospatal information congress 19 - 21 November 2018 Deqing, China

Comparative study of image upscaling techniques

- Arithmetic Average Variability-Weighted (AAVW),
- Averaging (AV),
- Bilinear (BL),
- Bicubic (BC), and
- Nearest neighbor (NN)

- TM image for test
- SPOT image
- Scaling: 2×2, 3×3, 4×4, 5×5, 6×6, 7×7, 8×8, 9×9, 10×10
- TM: 30→60m, 90m, ..., 300m
- Classification and accuracy assessed
 - Overall accuracy
 - Class level accuracy

(Han et al., 2009, http://www.docin.com/p-1447444919.html)

2018/11/21

UN World Geospatal information congress 19 - 21 November 2018 Deging, China

9

Upscaled images: results and classification Water Farmland Grassland Forset Built-up area Bare soil The up-scaled TM images at 300m resolution by different aggregation methods: (a) by AAVW, (b) by AV, (c) by BL, (d) by BC, (e) by NN (Han et al., 2009, http://www.docin.com/p-1447444919.html)

Contents

- Why upscaling (aggregation) of land cover data:
 An introduction
- Upscaling of land cover data indirectly via upscaling of remote sensing image data
- Upscaling of land cover data directly via aggregation
- Conclusions and outlooks

2018/11/21

UN World Geospatal information congress 19 - 21 November 2018 Deqing, China

Scaling of land cover data

- Upscaling:
 - fine → coarse
 - e.g. 30m→50m→6m
 - **→**100m**→**200m
 - **→**250m
- Downscaling:
 - coarser to fine
 - e.g. 300m→200m →100m →50m

What about a resolution between 30m and 500m?

2018/11/21

UN World Geo

- Resolutions of current land cover datasets
 - Globeland30: 30m
 - European GlobCover: 300m
 - MODIS12C1: 500m
 - UMD: 1km

	Land cover	Provider	Reso- lution	Classes
1	IGBP- DISCover	USGS	1km	vegetation
2	UMD	University of Maryland	1km	Multiple
3	MODIS 500m	University of Boston	500m	Multiple
4	GLC2000	European Joint Research Center	30m	Multiple
5	NLCD (US) 30m	USGS	30m	Multiple
6	Globeland30	National Geomatics Center of China	30m	Multiple

Globeland30: high-resolution land cover data

- 10 classes
- 30m resolution
- Global coverage
- · Two epoches
 - **-** 2000, 2010
- Accuracy:
 - Over 85%
 - By international assessment
- http://www.globallandcover.com/home/Enbackground.aspx

2018/11/21

UN World Geospatal information congress 19 - 21 November 2018 Deqing, China

Upscaling of land cover data: Aggregation with classic techniques

- By majority rule
- By nearest neighbour (or central pixel)
- By random selection
- By some priority rules
 - based on global structural information
 - Based on local structural information

2018/11/21

UN World Geospatal information congress 19 - 21 November 2018 Deging, China

Measures for aggregation effects

Landscape pattern indices

- PLAND: % of total landscape area
- PAFRAC: The difference of perimeter area fractal dimension
- AI: Aggregation index
- LSI: landscape shape index

(1). PLAND is expressed as follows:

$$PLAND = p_i = \frac{\sum_{j=1}^{n} a_{ij}}{A}$$
 (100)

While, a_{ij} is area of patch ij, A is total area of landscape.

(2). PAFRAC is expressed as follows:

$$\frac{2}{\left(s_{j}\sum_{i=1}^{n}\ln p_{ij} \cdot h_{i}s_{j}\right) \cdot \sum_{j=1}^{n}\ln p_{ij}\sum_{j=1}^{n}\ln a_{ij}} \frac{1}{\left(s_{i}\sum_{j=1}^{n}\ln p_{ij}\right)^{2}} + \left(s_{j}\sum_{j=1}^{n}\ln p_{ij}\right)^{2}}$$
(2)

While, a_{ij} is area of patch $_{ij}$, p_{ij} is perimeter of patch $_{ij}$, is number of patch.

2018/11/21

(3). AI is represented as follow:

$$AI = \left[\frac{g_{ii}}{\text{max} \rightarrow g_{ii}}\right] (100)$$
(3)

While, s_{ii} equals the number of like adjacencies between pixels of patch type i based on the single-count method. $\max \rightarrow s_{ii}$ is the maximum of s_{ii} . If A_i is the area of class i and n is the side of a largest integer square smaller than A_i , and $m = A_i - n2$, then the largest number of shared edges for class i, $\max \rightarrow s_{ii}$ will take one of the three forms:

$$\max \rightarrow \varepsilon_{ii} = 2n (n-1)$$
, when $m = 0$, or
 $\max \rightarrow \varepsilon_{ii} = 2n (n-1) + 2m - 1$, when $m = n$, or
 $\max \rightarrow \varepsilon_{ii} = 2n (n-1) + 2m - 2$, when $m > n$.

(4). LSI is expressed as follows:

$$LSI = \frac{e_i}{\min \rho_i}$$
(4)

 ^{e}i equals the total length of edge of class i in terms of number of cell surfaces. It includes all landscape boundary and background edge segments involving class i.

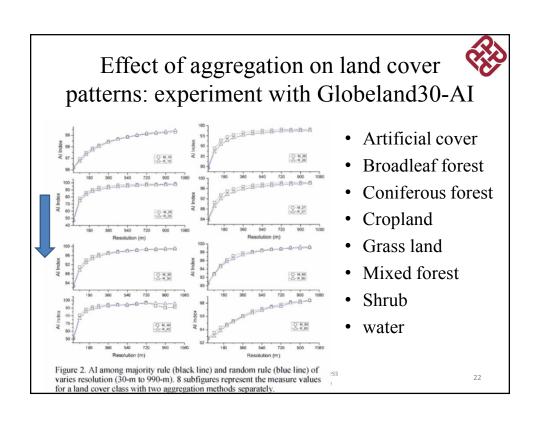
19

Effect of aggregation on land cover distribution: experiment

UN World Geospatal information congress 19 - 21 November 2018 Deging, China

- Globland30
- $30m(1x1) \rightarrow 990(33x33)$
- By majority and random rules
- Aggregation index as measure

$$AI = \left[\frac{g_{ii}}{max \rightarrow g_{ii}}\right] (100)$$


- Al=1 → highest level of aggregation, i.e. comprised of pixels sharing the most possible edges.
- AI =0 → completely disaggregated (lowest aggregation)
- g_{ii} = number of like adjacencies (joins) between pixels of patch type (class) i based on the *single-count* method.
- max-g_{ii} = maximum number of like adjacencies (joins) between pixels of patch type (class) i (see below) based on the *single-count* method.

(http://www.umass.edu/landeco/research/fragstats/documents/Metrics/Contagion%20-%20Interspersion%20Metrics/Metrics/C116%20-%20AI.htm)

2018/11/21

UN World Geospatal information congress 19 - 21 November 2018 Deqing, China

Effect of aggregation on land cover patterns. experiment with Globeland30-PLAND

Figure 5. PLAND among majority rule (black line) and random rule (blue line) of varies resolution (30-m to 990-m). 8 subfigures represent the measure values for a land cover class with two aggregation methods separately.

- Artificial cover
- Broadleaf forest
- Coniferous forest
- Cropland
- Grass land
- Mixed forest
- Shrub
- water

23

Analysis of experimental results

- Both aggregation approaches
 - cause distortions of cover type proportions and spatial patterns.
- Major-rule (M rule):
 - filters out minor patches so as to obtain more clumped landscapes
 - Maintains spatial pattern better
- Random-rule (R_rule):
 - maintains cover type proportions better, but
 - tends to make spatial patterns change toward disaggregation.

2018/11/21

UN World Geospatal information congress 19 - 21 November 2018 Deqing, China

Ideas arising from experimental results

- Take care of spatial structure
 - Local structure
 - Global structure
- Two corresponding techniques
 - Markov random field
 - Spatial scan statistic

- Markov random field
 - keep the pattern similarity between two scale
 - preserve the spatial continuity
- Spatial scan statistic
 - preserving heterogeneity and information from rare classes
 - Consideration of global percentage of each class

2018/11/21

UN World Geospatal information congress 19 - 21 November 2018 Deging, China

25

Spatial scan statistic

- $7x7 \rightarrow 1x1$
- What to be assigned to the new pixel?
 - Nearest=wetland
 - Majority=cultivated
- Which is most likely according to the known global percentages
- Suppose the global percentage for each class is
 - Cultivated = 72.13%
 - Wetlands = 5.93%
 - Forested = 7.93%
- Considering both the percentage in the window and global, the likelihood ratio

Wetlands =0.197

- Forested =0.836.

See Coulston 2004 for mathematical models

Coulston, 2004, The spatial scan statistic: A new method for spatial aggregation of categorical raster map: https://arxiv.org/ftp/arxiv/papers/1408/1408.0164.pdf

UN World Geospatal information congres 19 - 21 November 2018 Deqing, China

26

2018/11/21

Markov random field (MRF)

- MRF is a graphical model of probability distribution over random variables.
- It provides a convenient and consistent way to represent spatial dependency among random variables
- With RMF, two aspects can be taken into consideration
 - Similarity before aggregation
 - Spatial correlation during aggregation
- Procedure
 - Represent the Globeland30 by a 2-D MarkovRandom Field;
 - Built an energy function over the pixel class proportions and the neighbor pixels' contributions;
 - Determine the final pixel class at coarse resolution through the comparison of energy value for each class.

Connectivity map x in 1D MRF

Connectivity map x in 1D MRF

(b) MRF-based upscaling

Figure 3.1 Upscaling of Land cover data with MRF

2018/11/21

UN World Geospatal information congress 19 - 21 November 2018 Deqing, China

Contents

- Why upscaling (aggregation) of land cover data:
 An introduction
- Upscaling of land cover data indirectly via upscaling of remote sensing image data
- Upscaling of land cover data directly via aggregation
- · Conclusions and outlooks

2018/11/21

UN World Geospatal information congress 19 - 21 November 2018 Deqing, China

31

Conclusions

- All aggregation techniques caused distortions
 - cover type proportions
 - spatial patterns
 - Continuity
- Which performs better?
 - $\ Spatial \ pattern: \ \ M-rule \ better \ than \ R_rule;$
 - Type proportion: R_rule better than other two;
 - Pattern and spatial continuity: MRF better than other two

2018/11/21

UN World Geospatal information congress 19 - 21 November 2018 Deqing, China

Outlooks

- Downscaling of remote sensing images
 - Block-to-point Kriging interpolation
 - Super-resolution mapping
 - Downscaling via spar
- Downscaling of land cover data
 - Still need of preserving different cover type and different properties
 - Why not making use of all existing land cover data at different resolutions
 - se representation with double dictionaries
- Quality of aggregation and disaggregation vs reliability of SDG indicators computed

2018/11/21

UN World Geospatal information congress 19 - 21 November 2018 Deging, China

33

End of presentation

Supported by NSFC and HK Polytechnic University

2018/11/21

UN World Geospatal information congress 19 - 21 November 2018 Deqing, China